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SUMMARY

The compound Poisson process is a useful model for describing total claim costs in the

insurance industry. In this investigation, the compound Poisson model is modified to allow

dependence among the compounding variables in an effort to more accurately model situations in

which successive claim awards are correlated and/or form a nonstationary process. Specifically,

the sequence is assumed to follow an ARIMA(p,dq) model. This type of model is illustrated

with the use of actual asbestosis claim cost data collected from Naval shipyards.
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POISSON COMPOUNDING OF DEPENDENT RANDOM VARIABLES:

A STOCHASTIC MODEL FOR TOTAL CLAIM COSTS

JOHN E. ANGUS

Department of Mathematics
The Claremont Graduate School

143 E. Tenth Street
Claremont, CA 91711

1. Introduction and Preliminary Development

On a fixed probability space (Q, S, P), let {NT; T > 0) be a nonhomogeneous Poisson

process with mean value function ENT = rn(T), T _> 0, satisfying m(0) = 0, m(o) is

nondecreasing, m(T) 1" -c as T-i,, and let (Xt, t > 1) be a sequence of random variables,

independent of the Poisson process. When the Xis are independent and identically distributed

(0d), the process (CT, T Ž 0) defined by

CT=rNTxt (1)t=l

(where a summation with upper index 0 is defined to be 0) is called a Compound Poisson

Process (CPP). The CPP is used extensively in modeling the total claim costs in insurance risk

analysis. See Prabhu (1980), for example. In this context, claims are generated according to a

Poisson process, and successive claim awards are represented by the Xis. When applied to

specific types of claims, especially those involving bodily injury, the CPP may no longer be an
accurate portrayal of the process because the sequence of Xis may be autocorrelated and / or

nonstationary. This could be caused, for example, by the effects of legal precedent established in

adjudicating the claims, economic trends, and so on.

To account for possible trends and autocorrelation within the sequence of Xis, the CPP

can be modified by assuming that {Xt, t > 1-d) is an ARIMA(p, d, q) process. That is,

introducing the back-shift operator B (BJxt=xt~j) and difference operator V (V0Xt--Xt,

(1-B)Xt = Xt-Xt.1, vJxt=V(vJ'Ixt),j > 1 ), it is assumed that for t > 1,

vdx=t + Yt (2)
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where {Yt d {Yt' t = 0, ±1, ... } is a zero-mean causal ARMA(p, q), and gt is a constant. This

in turn means that {Y t j is a zero-mean second order stationary sequence that satisfies a set of

difference equations of the form

(p(B)Yt = O(B)Zt (3)

2 2 q

where (p(B) = I - (p1IB -9 q•B2 ... -p qpBP, 0(B) = 1 + 0 1B + 0 2 B + ... + 0q Bq, and the

polynomial (p(o), when treated as a function of a complex variable z, has no roots inside or on the
unit circle in the complex plane. The sequence [Zt} is assumed to be a white noise sequence,

that is, EZt=0, and EZtZs = '2 8(t - s) for all integers s and t, where 8(k) = 0 if k # 0, and 8(0) =

1. This is usually denoted by (Yt )-ARMA(p, q), and (Zt)-WN(0, 02).

There are, of course, infinite choices for the process [Xt) that would account for

autocorrelation and / or nonstationarity. The ARIMA choice is particularly attractive for many
reasons. For example, it is known that ARMA (p, q) process, the d = 0 case, can approximate a

broad class of stationary processes whose autocorrelation functions approach 0 as the lag
approaches -o. In addition, the ARIMA process describes processes that possess a deterministic

or stochastic polynomial trend, as well as explosive - type nonstationarity (as exemplified by the
simple random walk model). Finally, statistical techniques for identifying, estimating,
diagnosing, and forecasting ARIMA models are well-developed, mature (see Box and Jenkins,
(1970), Priestley (1981), or Brockwell and Davis (1992), for example), and highly automated in
popular statistical computing packages, making them imminently practical for this application

and others in which dependent sequences must be modeled.

To demonstrate the plausibility of this approach to modeling actual claim costs, 221

successive asbestosis claims collected from US Naval shipyards were compiled. These are listed
in Table 2 of the Appendix. These are plotted in Figure 2. Figures 3 and 4 show, respectively,

the estimated autocorrelation and partial autocorrelation functions of the series after differencing
once at lag 1. These suggest that perhaps an MA(l), AR(5) or mixed model would b:
appropriate to describe the differenced series. Figure 5 shows the estimated autocorrelation

function of the estimated residuals from a fitted ARIMA(0, 1, 1) model for the original series,
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which yield a Portmanteau test on the first 20 values of 15.01 on 19 degrees of freedom, which

appears consistent with whiteness of the residuals and adequacy of the fit. The fitted model is

X t = X t + 244.13 + Zt - .93 Zt. 1, {Zt)-WN(0, 6.04 x 108).

Figure 1 is a plot of cumulative number of asbestosis claims versus time reported from the same

Naval Shipyards. These are not in one-to-one correspondence with the claim amounts in Table 2

because not all claims had been adjudicated. Figure 1 also contains a fitted 5th degree

polynomial approximating the mean value function of a postulated underlying nonhomogeneous

Poisson process. Finally, Table 1 gives observed counts versus expected, computed from the

postulated nonhomogeneous Poisson model, for randomly selected time intervals. Again, the

data appear consistent with a nonhomogeneous Poisson process.

Without further assumptions on the sequence (Zt), distribution theory for (CT) cannot

be addressed. However, assuming only that (Zt )-IID(0, a 2 ), asymptotic distributions for Cr

for large T, can be developed. This is the subject of the next section. The final section discusses

how the asymptotic results may be used in practice.

2. Asymptotic Distribution theory for CT

By the assumptions on m(T) = ENT, asymptotic distribution theory for CT depends on

the following results from Angus (1992). Let (Xt, t=l-d, 2-d, .., 0, 1, 2, ...) be an ARIMA(p,d,q)

process, satisfying vdxt=Y t +g where (Yt is a causal ARMA(pq) process with

{Zt)-IID(0,a 2 ). Define the usual operation of generating factorial polynomials by OM

i 1 (k-i+ 1) = k(k-1)...(k-j+l) for integers j and k with j>0, and k(0)--1. Thus, with k treated as a

variable, it follows that for jŽ-0,

V (k+1)0 1 )/[Oj+l)!] = k0 6/j!, (4)

and

Z=n-k 0)l'/ = (j+1)0 (5)

The main results from Angus (1992) are the following theorem and corollary, which hold even
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for the case d=0 with the convention that summations with upper limit 0 are taken to be 0. The

symbol "-ý" denotes convergence in distribution.

Theorem 1. Letyye) be the autocorrelation function of Yt=VdXt-.t, and suppose that

yy(0)+,.•h-lyy(h) >0. Then, as n-e.oo, the distribution of

(1/d!)En__ Xn ,d_ id-l(Vix )(t+i-1 )(i/i! - g.t(t+d-1)(d)/d!)

[y(0) 1 ==[(v+d-1)(d)] 2 +2 _-1 y(h)X'hl(v+d-1)(d) (v+hd-1)(d)]1/2 (6)

converges to that of N(0,1).

Corollary 1. Under the conditions of Theorem 1, n- (Xt-g(t+d-1)(

N(0, o)2) as n-+-, where
(0 2=(2d+1)" Ild!-2[Iy (0)+2Yh 1Iyy(h)]. (7)

The proofs of these are given in Angus (1992), and make use of the following Lemma, also

proved in Angus (1992), that will be of further use in the present discussion.

Lemma 1. Suppose that VdXt=Y t +V, tŽ1. Then for t1, Xt can be expressed as

•d.,d-lviX (t+i-1)(i) g(t+dl)(d) .,t (v+d-2)(d-l)Xt = 1i__o(V 0) - + - + 2.vltvl •(8)
t! d!o" +k=Iyt-V+1 (d-1)!

and for n>1
n X d'lm ,(n+i)(i+l) g(n+d)(d+l) n Y (v+d.1)(d)9)

t=h = 0i--- 0. (i+l) + (d+l)! +ý=1 n-v+fl d!(

The next theorem gives the asymptotic distribution of CT as T--1-. Here, the following

notation will be used. For sequences an and b n>0 Tn is AN(an, b%) means that
I n T n- nn/2limn P{T <t } t (2nt)exp(-x2/2)dx

for all real t, where n may be a discrete or continuous variable, and the limit is taken as n-. c

where c is real or +**.

Theorem 2. Let (Xt) in (1) be an ARIMA(p, d, q) as in Theorem 1, and assume the

conditions and notation given there. Then, as T-o-o, CT is AN(vT, '4) where

-5-



g[m(T) + d](d+l)
VT (d+l)!

and
2 m(T) 2d+l 2 lyy(h) + (11)

tT = d2(2d+l)(YY(0) + 1 (2d+1)).

From Lemma 1, by conditioning on (X.d, X2 d, .... X0), the following corollary is

immediate.

Corollary 2. Under the conditions of Theorem 1, if d > 1, then conditioned on (X1.d, X,

X0 ), CT is AN(vT, '4) where

ld-1x 0(m(T)+i)(i+l) +g[m(T)+d](d+l) (12)
VT = Ii-(V X0 ,~)- + (12)

2.and TT is given in (11).

Another useful corollary is the special case d--0, which indicates that the process (Xt) is

a causal ARMA(p, q) process with mean gt, having autocovariance function yy(h) = cov(Xt,

Xt+h).

Corollary 3. Under the conditions of Theorem 2 with d=0, as T--•,, CT is AN(v., )

where

VT = rM(T) (13)

and
'= m(T)(yy(0)+21h=lYy(h) +it2) (14).

Proof of Theorem 2. From (9), define the polynomial p(n) with random coefficients by
,d-lI ix (n+i)(i+l) ga(n+d) (d+l)2

p) Xd + Then with vT and 2 as in (10) and (11) itp(n) 0 (i+l)! (d+)!

follows that N

CT-VT + (15)
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By independence of thL processes {Xt) and (NT), the two random variables on the right side of

(15) are uncorrelated. By Theorem 1 and Corollary 1, the first term on the right side of (15)

converges in distribution to

N'y(0)+21h•=Iyy(h) 1l/2
Nl(0'l)'Yy(0) + 2 cc1 Yy(h) + E(Ed+l)J

and by a first order Taylor expansion of the function f(x) = (x+d)(d+l), the second term on the

right side of (15) converges in distribution to

N2(01)gI2 (2d+l) d 1/2l

2( ,y(0) + 2 cc lyy(h) + g E(2d+l)l

where NI(0,1) and N2 (0,1) denote independent standard normal random variables. The result

now follows immediately.

3. Application

In practice, when T is large, Theorem 2 can be used to approximate the distribution of

CT. If all parameters are known, then the Theorem can be applied directly. Otherwise, the

parameters must be estimated from data. The parameters that must be estimated include the

mean value function m(T) for the Poisson process, and the parameters in the ARIMA(p, d, q)

process, namely, p, d, q, q 1, ..., qp, 01, .... 0 q, and Y2. Efficient estimation of these inn turn

leads to efficient estimation of the autocovariance function yy(*). Appropriate data for

accomplishing this are those listed in the Appendix for the asbestosis claims. For illustrative

purposes, assume that the claims are generated according to an homogeneous Poisson process.

Then for this dataset, rm(e) would be estimated by
A
m(T) 1.63 T. (16)

As previously discussed, the series of claim amounts fits an ARIMA(O, 1,1) model
Xt= t--t1 +gIx+ Zt + OlZt.1,

with gI=244.13, 01= -.93, and o-2= 6 .04 x 10'. The autocovariance function of Yt=VXt in this

case is
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-y(O) = a2(1 +0 2), -y(±+) = o201 , y(h) = 0, for Ihl>l.

Thus, (10) and (11) become
244.13(l.63T + 1)(1.63T) = 324.31 T2 + 198.97 T (17)

T =2

2= (1.63T) 3  8 )2 2(8
,;rT 3 ((6.04 x 10 )(1 + (-.93) +i(2)(-.93)) + (244.13)2(3)) (8

= (4.5x10
6 )T 3

so that in this example, CT is AN(vT, ) with VT and 4 given as in (17) and (18). This can be

compared to the approximation that would be obtained if the claim data were treated naively as

lID. If this were done, the sample mean of the Xi would be 15098.16, the sample variance

would be 5.62 x 108 , and the approximation would be CT is AN(Nr, ý2 where

VT = 15098.16(1.63T) = 24610.00 T (19)

2 = (1.63T)(5.62 x 108 + (15098.16)2) = (1.3 x 109 ) T. (20)

The discrepancy between (17) and (19), and between (18) and (20) is large, with (19) and (20)

being of the wrong order of magnitude in T.

4. Conclusions

A generalization of the CPP model for insurance claim costs has been presented and its

plausibility demonstrated uw,-g asbestosis claim data collected from Naval shipyards.

Asymptotic distribution theory has been developed to allow approximation of the distribution of

total claim costs during [0, T] for large T. These approximations and a numerical example

demonstrate that large discrepancies can be experienced when applying the naive CPP when the

more general model using an ARIMA(p,d,q) process is appropriate.
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Appendix: Tables and Figures

Table 1: .......................... Observed versus expected number of claims

Table 2: .......................... Asbestosis-related claim costs, 1/90 - 6/91

Figure 1: ......................... Cumulative number of asbestosis-related claims versus time,

along with fitted 5th-degree polynomial

Figure 2: ......................... Asbestosis-related claim costs, 1/90 - 6/91, time plot

Figure 3: ......................... Estimated autocorrelation function of asbestosis claim cost

data (asbestosis cost series differenced at lag 1)

Figure 4: ......................... Estimated partial autocorrelation function of asbestosis claim

cost data (asbestosis cost series differenced at lag 1)

Figure 5: ......................... Estimated autocorrelation function of estimated residuals from

asbestosis cost data fitted to an ARIMA(0,1,1) model
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Table 1: Observed Claims Versus Expected

Time Interval Observed (O) Expected (E 2

2 62 117 120.814 0.12041
62 71 16 19.953 0.78331
71 132 136 135.116 0.00579
132 145 27 27.534 0.01037
145 195 105 98.055 0.49184
195 222 45 47.070 0.09104
222 244 28 35.278 1.50164
244 298 77 76.380 0.00504
298 351 79 65.320 2.86491
351 450 107 119.842 1.37617
450 490 54 54.553 0.00560
490 520 48 44.331 0.30363
520 544 35 37.362 0.14936

Chi-square = 7.71 on 6 degrees of freedom (6 parameters were estimated).
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Table 2
Asbestosis Claim Costs: Naval Shipyards. January 1990 throuqh June 1991

(Read Data Across)
853 1082 1736 12035 29201 35473 42308

27454 29933 15832 29710 17809 2186 3803
39355 23214 609 10835 44982 16445 1946
2192 18571 93514 24097 561 24786 679

23975 17117 8782 6365 58995 948 17734
656 21587 49213 6369 1587 68921 24389
335 14456 124 1445 137 578 30277

1014 9848 660 7740 30045 2563 9511
542 21303 18366 11408 26127 25944 13553

17096 165 455 34596 672 389 7930
40184 3067 44565 74062 1216 368 26727
51622 673 30781 1325 22 10737 21835

828 19393 24764 1004 30319 1111 50087
555 593 33591 8659 1075 26805 1632

25730 2426 15152 505 375 11065 524
1768 23327 65 25336 557 1374 27221
8350 1932 191 2003 237 547 17190

265 45838 3275 638 2461 742 29577
15718 1045 15925 60 250719 2569 18267

432 448 26962 53647 19201 1996 60
1858 27388 1331 528 356 17492 15366

24614 30735 457 720 265 838 20073
11557 4388 566 44606 26693 15796 415

266 21380 24891 27628 22 33982 21919
37148 26608 15843 16177 49743 3802 17555
1381 1052 14444 903 753 555 16512
5227 695 44009 9353 420 198 993

108199 248 1436 1894 991 1710 457
5377 29479 60 32700 425 4511 41080

519 20725 16417 969 22484 1959 35298
245 1257 634 2016 561 402 550
950 385 255 54561
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